Apparent Epigenetic Meiotic Double-Strand-Break Disparity in Saccharomyces cerevisiae: A Meta-Analysis
نویسندگان
چکیده
Previously published, and some unpublished, tetrad data from budding yeast (Saccharomyces cerevisiae) are analyzed for disparity in gene conversion, in which one allele is more often favored than the other (conversion disparity). One such disparity, characteristic of a bias in the frequencies of meiotic double-strand DNA breaks at the hotspot near the His4 locus, is found in diploids that undergo meiosis soon after their formation, but not in diploids that have been cloned and frozen. Altered meiotic DNA breakability associated with altered metabolism-related chromatin states has been previously reported. However, the above observations imply that such differing parental chromatin states can persist through at least one chromosome replication, and probably more, in a common environment. This conclusion may have implications for interpreting changes in allele frequencies in populations.
منابع مشابه
Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae
In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...
متن کاملMeiotic versus mitotic recombination : Two different routes for double - strand break repair
Studies in the yeast Saccharomyces cerevisiae have validated the major features of the double-strand break repair (DSBR) model as an accurate representation of the pathway through which meiotic crossovers (COs) are produced. This success has led to this model being invoked to explain double-strand break (DSB) repair in other contexts. However, most non-crossover (NCO) recombinants generated dur...
متن کاملGenetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break.
In the yeast Saccharomyces cerevisiae, the binding of the Rap1 protein to a site located between the 5' end of the HIS4 gene and the 3' end of BIK1 stimulates meiotic recombination at both flanking loci. By using strains that contain mutations located in HIS4 and BIK1, we found that most recombination events stimulated by the binding of Rap1 involve HIS4 or BIK1, rather than bidirectional event...
متن کاملCrossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway.
Two RecA-like recombinases, Rad51 and Dmc1, function together during double-strand break (DSB)-mediated meiotic recombination to promote homologous strand invasion in the budding yeast Saccharomyces cerevisiae. Two partially redundant proteins, Rad54 and Tid1/Rdh54, act as recombinase accessory factors. Here, tetrad analysis shows that mutants lacking Tid1 form four-viable-spore tetrads with le...
متن کاملPatterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae.
The double-strand break repair (DSBR) model of recombination predicts that heteroduplexes will be formed in regions that flank the double-strand break (DSB) site and that the resulting intermediate is resolved to generate either crossovers or noncrossovers for flanking markers. Previous studies in Saccharomyces cerevisiae, however, failed to detect heteroduplexes on both sides of the DSB site. ...
متن کامل